此外,玻璃或塑料码盘容易因振动或极端温度而损坏,因而限制了光学编码器在恶劣环境应用中的适用范围;将其组装到电机上不仅耗时,而且受污染的风险更大。最后,如果光学编码器的分辨率较高,则会消耗 100 mA 以上的电流,进一步影响了它应用于移动设备或电池供电设备。磁性编码器磁性编码器的结构与光学编码器类似,但它利用的是磁场,而非光束。
编码器码盘的材料有玻璃、金属、菲林:玻璃码盘是在玻璃镀铬面上腐蚀出明暗码道,其热稳定性好,精度高,易碎,成本高;金属码盘直接以通和不通刻线,不易碎,但由于金属不易腐蚀,易形变,精度就有限制,其热稳定性就要比玻璃的差一个数量级;
此外,相比光学编码器使用的玻璃码盘,它更不容易受到振动和极高/极低温度的影响。如前所述,因为电容式编码器不存在 LED 烧坏的情况,所以使用寿命往往比光学编码器长。因此,电容式编码器的封装尺寸更小,在整个分辨率范围内电流消耗更小,只有 6 至 18 mA,这就使它更适合电池供电应用。鉴于电容式技术的稳健性、精度和分辨率均比磁性编码器高,因而后者所面临的电磁干扰和电气噪声对它的影响并不大。此外,在灵活性和可编程性方面,电容式编码器的数字特性也能带来关键优势。
随后,该信号经由编码器的板载 ASIC 转换,以计算轴的位置和旋转方向。电容式编码器的工作原理与数字游标卡尺相同,因此它所提供的解决方案克服了光学和磁性编码器的许多缺点。事实证明,这种基于电容的技术具有高可靠性、高精度的特性。由于无需LED或视距,即使遇到会对光学编码器产生不利影响的环境污染物(如灰尘、污垢和油渍),电容式编码器也能达到预期的效果。此外,相比光学编码器使用的玻璃码盘,它更不容易受到振动和极高/极低温度的影响。
编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。